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We propose a method for estimation of coupling between the systems governed by scalar time-delay differ-
ential equations of the Mackey-Glass type from the observed time series data. The method allows one to detect
the presence of certain types of linear coupling between two time-delay systems, to define the type, strength,
and direction of coupling, and to recover the model equations of coupled time-delay systems from chaotic time
series corrupted by noise. We verify our method using both numerical and experimental data.
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I. INTRODUCTION

The problem of recovery of nonlinear dynamical models
of time-delay systems from time series has received much
attention in recent years �1–6�. However, the reconstruction
of model equations of coupled time-delay systems and esti-
mation of coupling between them from time series have not
been practically considered yet. At the same time, interaction
between time-delay systems is a typical case in many impor-
tant problems. For example, the use of coupled time-delay
systems demonstrating chaotic dynamics of a very high di-
mension is promising for secure communication �7� includ-
ing chaotic communication systems based on lasers with op-
tical feedback �8–10�. Besides, coupled time-delay
differential equations are used for the description of behavior
of interacting populations �11–13� and for modeling the pro-
cesses in the human cardiovascular system �14,15�. In this
paper we propose a method that is able to reconstruct two
coupled scalar time-delay systems and to estimate the cou-
pling strength and direction from the observed time series
data.

The proposed method is suitable for time-delay systems
X1 and X2 described in the absence of coupling by the first-
order delay-differential equation with single delay time

�1,2ẋ1,2�t� = − x1,2�t� + f1,2„x1,2�t − �1,2�… , �1�

where �1,2 are the delay times, functions f1,2 define nonlocal
correlations in time, and the parameters �1,2 characterize the
inertial properties of the first and the second system, respec-
tively. In general case Eq. �1� is a mathematical model of an
oscillating system composed of a ring with three ideal ele-
ments: nonlinear, inertial, and delay. In Fig. 1 these elements
are denoted as f1 ,�1, and �1, respectively, for the ring system
X1 and as f2 ,�2, and �2 for the ring system X2.

The time-delayed feedback systems X1 and X2 can be
coupled in different ways. For instance, the system X1 vari-
able x1�t� multiplied by a coupling coefficient k1 can be in-
jected into the ring system X2 at one of the three points
indicated in Fig. 1 by the Arabic numerals 1-3. Similarly, the
system X2 variable x2�t� multiplied by a coupling coefficient
k2 can be injected into the ring system X1 at different points
indicated in Fig. 1 by the Roman numerals I–III. If the type

of action of X1 on X2 is the same as the type of action of X2
on X1, then the dynamics of both coupled systems is de-
scribed by one of the following equations:

�1,2ẋ1,2�t� = − x1,2�t� + f1,2„x1,2�t − �1,2� + k2,1x2,1�t − �1,2�… ,

�2�

�1,2ẋ1,2�t� = − x1,2�t� + f1,2„x1,2�t − �1,2� + k2,1x2,1�t�… , �3�

�1,2ẋ1,2�t� = − x1,2�t� + f1,2„x1,2�t − �1,2�… + k2,1x2,1�t� . �4�

Equation �2� governs the both systems X1 and X2 for the type
of coupling at which the first time-delay system acts on the
second one at the point 1 and the second system acts upon
the first one at the point I. We denote this type of coupling as
1/ I. Equations �3� and �4� describe both coupled systems for
the types of coupling 2/ II and 3/ III, respectively. A block
diagram of the coupled time-delay systems for the coupling
type 3/ III is shown in Fig. 2. If the systems X1 and X2 affect
on each other in different ways, then they are described by
different equations. For example, in the case of 1 / II type of
coupling, the system X1 is given by Eq. �3� and the system X2
is given by Eq. �2�.

Certainly, the variety of possible types of coupling be-
tween time-delay systems is very large. In this paper we

FIG. 1. Block diagram of two coupled time-delay systems X1

and X2. The elements denoted as �1 and �2 provide a delay and the
elements denoted as f1 and f2, and �1 and �2 provide the nonlinear
and inertial transformations of oscillations, respectively. The ele-
ments k1 and k2 determine the strength of coupling between X1 and
X2. Arabic numerals 1–3 designate points where the system X1 acts
on the system X2. Roman numerals I–III designate points where X2

acts on X1.
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restrict our consideration to only three chosen types of linear
coupling between two time-delay systems and propose for
them the method of coupling coefficients estimation from
time series. The possibility of method extension to a more
wide class of coupled time-delay systems and the method
restrictions are discussed in the conclusion of the paper.

The paper is organized as follows. In Sec. II the method
for estimation of the parameters of coupled time-delay sys-
tems having the form of Eqs. �2�–�4� is presented. In Sec. III
we apply the method to various simulated and experimental
time series. The obtained results are summarized and dis-
cussed in Sec. IV.

II. METHOD DESCRIPTION

The proposed method for estimation of coupling between
time-delay systems is based on the reconstruction of the
time-delay systems X1 and X2 from time series. At first we
recover the model equation of the system X1, i.e., we esti-
mate the parameters �1 ,�1, and k2 and reconstruct the non-
linear function f1.

To recover the delay time �1 from the temporal realization
x1�t� we exploit the method proposed in Ref. �5�, where we
have shown that there are practically no extrema separated in
time by �1 in the time series of time-delay system �1�. Actu-
ally, differentiation of Eq. �1� with respect to t gives the
following equation for the system X1:

�1ẍ1�t� = − ẋ1�t� +
df1„x1�t − �1�…

dx1�t − �1�
ẋ1�t − �1� . �5�

If for ẋ1�t�=0 in a typical case of quadratic extrema ẍ1�t�
�0, then for �1�0 the condition ẋ1�t−�1��0 must be ful-
filled. Thus, there must be no extremum separated in time by
�1 from a quadratic extremum �5�. Then, for �1 definition one
has to determine the extrema in the time series and after that
to define for different values of time � the number N of pairs
of extrema separated in time by � and to construct the N���
plot. This plot will demonstrate a pronounced minimum at
time �1 equal to the delay time of the system. We find that
this method of the delay time estimation can be successfully
applied in the case where the system X1 is affected by the
system X2 under the condition that this action is not followed
by the appearance of a great number of additional extrema in
the time series of X1. Note that this technique uses only
operations of comparing and adding for the delay time defi-
nition. It needs neither calculation of approximation error
�3,6�, nor calculation of any measure of complexity of the
trajectory �1,4� and therefore it does not need significant time
of computation.

To recover the parameter �1, the nonlinear function f1,
and the coupling coefficient k2 we propose a method using
time series of both variables x1�t� and x2�t�. At first, let us
assume that the type of action of X2 on X1 is known a priori,
i.e., we know the form of equation governing the dynamics
of the time-delay system X1. As an example, we consider the
case described by Eq. �2�, when the system X2 variable is
injected into the time-delayed feedback system X1 before the
element providing the delay �point I in Fig. 1�. Let us write
Eq. �2� for the system X1 as

�1ẋ1�t� + x1�t� = f1�x1�t − �1� + k2x2�t − �1�� . �6�

According to Eq. �6� it is possible to recover the function f1
by plotting in a plane a set of points with coordinates �x1�t
−�1�+k2x2�t−�1� ,�1ẋ1�t�+x1�t��. Since the parameters �1

and k2 are unknown, one needs to plot �ẋ1�t�+x1�t� versus
x1�t−�1�+kx2�t−�1� under variation of � and k, searching for
a single-valued dependence in the plane �x1�t−�1�+kx2�t
−�1� ,�ẋ1�t�+x1�t��, which is possible only for �=�1 and k
=k2. As a quantitative criterion of single-valuedness in
searching for �1 and k2 we use the minimal length of a line
L�� ,k�, connecting all points ordered with respect to the ab-
scissa in the mentioned plane. The similar criteria of quality
for time-delay system recovery, based on calculation of mea-
sure of complexity of the projected time series were used in
Refs. �1,16� for the reconstruction of single time-delay sys-
tems. The minimum Lmin�� ,k� is observed at �=�1 and k
=k2. The dependence of �1ẋ1�t�+x1�t� on x1�t−�1�+k2x2�t
−�1� for the defined �1 and k2 reproduces the nonlinear func-
tion that can be approximated if necessary. The proposed
technique uses all points of the time series. It allows one to
estimate the parameters �1 and k2 and to reconstruct the non-
linear function from short time series.

Similarly it is possible to recover the nonlinear function f1
and the parameters �1 and k2 for the system X1 described by
Eq. �3� or Eq. �4� by plotting �ẋ1�t�+x1�t� versus x1�t−�1�
+kx2�t� or �ẋ1�t�+x1�t�−kx2�t� versus x1�t−�1�, respectively,
under variation of � and k. If we know that time-delay sys-
tems �1� are linearly coupled in one of the three ways de-
scribed in Sec. I, but we do not know at which point �I, II, or
III� X2 acts on X1, we have to reconstruct each of the model
equations �2�–�4� of the system X1 and to define Lmin�� ,k�
for each of these equations. The single valuedness of the
recovered nonlinear function can be achieved only in the
case of the true choice of the model equation. Hence the
smallest Lmin�� ,k� from the three obtained ones will corre-
spond to the true model choice. Thus, along with estimation
of the parameters of coupled time-delay systems, the method
allows one to identify the type of coupling.

The time-delay system X2 can be reconstructed from the
time series of x2�t� and x1�t� in a similar way. The method
allows us to estimate the parameters �2 and �2, to recover the
nonlinear function f2, and to define the coupling coefficient
k1 and the type of action of X1 on X2. Identifying the type of
coupling between the systems and estimating the values of
both coupling coefficients k1 and k2 we can judge the char-
acter of interaction between the time-delay systems X1 and
X2.

FIG. 2. Block diagram of coupled time-delay systems for the
3/ III type of coupling.
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III. METHOD APPLICATION

A. Estimation of coupling between identical Mackey-Glass
equations

First we apply the method to the time series produced by
two coupled identical time-delay systems described in the
absence of coupling by the Mackey-Glass equation

ẋ1,2�t� = − b1,2x1,2�t� +
a1,2x1,2�t − �1,2�
1 + x1,2

c1,2�t − �1,2�
, �7�

which can be converted to Eq. �1� with �1,2=1/b1,2 and the
function

f1,2„x1,2�t − �1,2�… =
a1,2x1,2�t − �1,2�

b1,2„1 + x1,2
c1,2�t − �1,2�…

. �8�

The types of action of the systems X1 and X2 on each other
are chosen to be the same �Fig. 2�. We use the 3/ III type of
coupling according to our classification. In this case the dy-
namics of both coupled systems is governed by Eq. �4�. The
system parameters are chosen to be �1,2=300,a1,2
=0 .2 ,b1,2=0 .1 ,c1,2=10,k1=0.05, and k2=0 .1 to produce a
dynamics on a high-dimensional chaotic attractor. Part of the
time series of the system X1 is shown in Fig. 3�a�. The time
series is sampled in such a way that 300 points in time series
cover a period of time equal to the delay time �1=300. The
data set consists of 10000 points and exhibits about 600 ex-
trema as well as the time series of the system X2.

For various � values we count the number N of situations
when ẋ1�t� and ẋ1�t−�� are simultaneously equal to zero,
normalize N to the total number of extrema in the time se-
ries, and construct the N��� plot �Fig. 3�b��. The step of �
variation in Fig. 3�b� is equal to unity. The time derivative
ẋ1�t� and the extremal points are defined from the time series
by applying a local parabolic approximation. In the case of
noise absence we use three points in the procedure of the
local fit. The pronounced minimum of N��� takes place ex-
actly at �=�1=300.

The L�� ,k� plot �Fig. 3�c�� allows us to recover the pa-
rameters �1 and k2. To reduce the computation time we
choose a large initial step of � and k variation and then
reduce it in the neighborhood of minimum L�� ,k�. In Fig.
3�c� the step of � variation is set by 0.1 and the step of k
variation is set by 0.01. The minimum of L�� ,k� is observed
at �=10.1 and k=0.10. These values agree well with the true
parameter values �1=1/b1=10 and k2=0.1. In Fig. 3�d� the
recovered nonlinear function f1 is shown. It coincides prac-
tically with the true function �8�. Note that for the construc-
tion of the L�� ,k� plot and for the recovery of the function f1

we use only 2000 points of the time series of x1�t� and x2�t�.
In a similar way we reconstruct the time-delay system X2

and obtain the following estimation of its parameters: �2
=300,�2=10.1, and k1=0.05. For the indicated above param-
eter values of two coupled identical systems �7� the method
provides the detection of coupling presence and high accu-
racy of coupling coefficients estimation at 0.003�k1,2�0.3.
It should be noted that the method is still efficient for suffi-
ciently high levels of noise. For example, we apply the
method to the data produced by adding a zero-mean Gauss-

ian white noise to the time series of both coupled identical
Mackey-Glass equations. For the case where the additive
noise has a standard deviation of up to 20% of the standard
deviation of the data without noise, we obtain the same val-
ues of the recovered parameters as in the considered above
case of noise absence. Note that searching for the extremal
points in the case of noise level of 20% we use seven points
for local parabolic approximation of the data. However, the
quality of the nonlinear function recovery deteriorates with
the noise increasing. If the noise is involved in the system
dynamics the exact definition of the parameters becomes im-
possible for smaller noise levels than in the case of additive
noise.

B. Estimation of coupling between nonidentical Mackey-Glass
equations in the presence of noise

Let us consider a more general case of coupled noniden-
tical noisy time-delay systems X1 and X2 with different types
of action on each other. We apply the method to the time

FIG. 3. Reconstruction of the Mackey-Glass system X1 coupled
with the identical Mackey-Glass system X2 for the 3/ III type of
coupling. �a� The time series of the system X1. �b� Number N of
pairs of extrema in the time series of X1 separated in time by �, as
a function of �. N��� is normalized to the total number of extrema in
the time series. �c� The L�� ,k� plot for the choice of the model
equation in the form of Eq. �4�. L�� ,k� is normalized to the number
of points. Lmin�� ,k�=L�10.1,0.10�. �d� The recovered nonlinear
function at �1=300,�1=10.1, and k2=0.1.
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series of two coupled Mackey-Glass equations for the 1/ II
type of coupling �see Sec. I� at �1=300, �2=400, a1=0.2,
a2=0.3, b1,2=0.1, c1,2=10, k1=0.05, and k2=0.1. To investi-
gate the robustness of the method to perturbations we ana-
lyze the time series of X1 and X2 both corrupted by additive
Gaussian white noise. Figure 4 illustrates the obtained results
for a noise level of 10%.

The presence of noise in time series brings into existence
spurious extrema. These extrema are not caused by the in-
trinsic dynamics of a system and temporal distances between
them are random. To smooth the time series corrupted by
noise and to reduce the number of extrema caused by noise
we use more nearest-neighbor points in the procedure of lo-
cal approximation while estimating derivatives from data in
comparison with the case of noise absence �5�. For the con-
sidered case of noise level of 10% we use five points for the
local parabolic fit. In spite of the noise presence the pro-
nounced minimum of the N��� plot constructed for the sys-
tem X1 time series is observed at �=�1=300 �Fig. 4�a�� and
the pronounced minimum of N��� for the time series of X2 is
observed at �=�2=400 �Fig. 4�b��. The L�� ,k� plot, con-
structed for the system X1 recovery in the form of Eq. �3�,
demonstrates the minimum at �=10.0 and k=0.10 giving the
accurate estimation of �1 and k2. The location of the absolute
minimum of the L�� ,k� plot, constructed for the system X2

recovery in the form of Eq. �2�, allows us to obtain the fol-
lowing estimation of the parameters: �2=10.1 and k1=0.05.
The recovered nonlinear functions f1 and f2 are presented in
Figs. 4�c� and 4�d�, respectively.

C. Estimation of coupling between electronic oscillators with
delayed feedback from experimental data

The next example is the method application to experimen-
tal time series gained from two coupled electronic oscillators
with delayed feedback. A block diagram of the experimental
setup is shown in Fig. 5. The delay of the signal V1�t� for
time �1 and the delay of the signal V2�t� for time �2 are
provided by the delay lines DL-1 and DL-2, respectively,
constructed using digital elements or computer. The delay
line DL-1 was constructed in the following way: the analog-
to-digital converter ADC-1 and the digital-to-analog con-
verter DAC-1 were constructed using the chips. The digital
code was stored into RAM performed using the chip. In the
RAM we constructed the FIFO buffer which length we were
able to adjust. The entire circuitry of this device is too cum-
bersome to be included in the paper. It is available at http://
www.nonlinmod.sgu.ru/doc/scheme.pdf. To follow the ex-
periment one can construct the delay line using PC and
ADC/DAC card. By this strategy the second delay line DL-2
was constructed. We used the ADC/DAC card L-205 and PC.
The input voltage was read using a special program and
stored into RAM. In the RAM the FIFO buffer was orga-
nized using a software. We were able to regulate the buffer
length. The delay lines are practically dispersion free while
the signal band defined by the filter parameters lies within
the band of analog-to-digital converters. The conversion fre-
quencies of analog-to-digital converters are about 100 kHz
and the cutoff frequencies of the filters are about 1 kHz and
2 kHz.

The role of nonlinear devices, ND-1 and ND-2, is played
in the oscillators by the amplifiers with the transfer functions
f1 and f2, respectively. These nonlinear devices, ND-1 and
ND-2, were constructed using bipolar transistors and field-
effect transistors, respectively �Fig. 6�. The inertial properties

FIG. 4. Reconstruction of coupled nonidentical Mackey-Glass
systems from data corrupted by additive Gaussian white noise for
noise level of 10% and 1/ II type of coupling. �a� Number N of pairs
of extrema in the system X1 time series separated in time by �
normalized to the total number of extrema. �b� Number N of pairs
of extrema in the system X2 time series separated in time by �
normalized to the total number of extrema. �c� The recovered non-
linear function f1 at �1=300,�1=10.0, and k2=0.10. �d� The recov-
ered nonlinear function f2 at �2=400,�2=10.1, and k1=0.05.

FIG. 5. Block diagram of the experimental system of coupled
electronic oscillators with delayed feedback for the 1/ III type of
coupling. DL-1 and DL-2 are the delay lines, ND-1 and ND-2 are
the nonlinear devices, ADC-1 and ADC-2 are the analog-to-digital
converters, and DAC-1 and DAC-2 are the digital-to-analog con-
verters of the first and the second oscillator, respectively. ADC is a
two-channel analog-to-digital converter and PC is a computer.
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of oscillators are defined by low-frequency first-order RC
filters R1C1 and R2C2, which parameters specify �1 and �2.
The coupling of oscillators is realized using summing ampli-
fiers with gains k1 and k2. The type of coupling corresponds
to the case 1/ III according to our classification.

In the absence of coupling the considered oscillators are
given by

R1,2C1,2V̇1,2�t� = − V1,2�t� + f1,2�V1,2�t − �1,2�� , �9�

where V1,2�t� and V1,2�t−�1,2� are the delay line input and
output voltages, respectively, R1,2 and C1,2 are the resistances
and capacitances of the filter elements in the first and the
second oscillator, respectively. Equation �9� is of the form �1�
with �1,2=R1,2C1,2.

We record the signals V1�t� and V2�t� using a two-channel
analog-to-digital converter ADC �Fig. 5� with the sampling
frequency fs=10 kHz at �1=23 ms,�2=31.7 ms,R1C1
=0.48 ms,R2C2=1.01ms,k1=−0.1 and k2=0.1 . To measure
the resistance and capacitance of the filter elements we used
the universal digital multimeter E7–8 �Russia�. It has the
accuracy of 0.3% for the measurement of the capacitance and
the accuracy of 0.15% for the measurement of the resistance.
Taking into account the measurement errors, the values of
R1C1 and R2C2 can be written as R1C1=0.48 ms±0.003 ms
and R2C2=1.01 ms±0.005 ms.

The parts of the time series of the signals V1�t� and V2�t�
are presented in Figs. 7�a� and 7�b�, respectively. For the step
of � variation equal to the sampling time Ts=0.1 ms, the
pronounced minimum of N��� takes place at �=23.0 ms �Fig.
7�c�� for the first oscillator and at �=31.7 ms �Fig. 7�d�� for
the second oscillator.

To construct the L�� ,k� plot we use the step of � variation
equal to 0.01 ms and the step of k variation equal to 0.01.
Reconstructing the model of the oscillator X1 in the form of
Eq. �4� we obtain the minimum of L�� ,k� at �=0.46 ms and
k=0.10 that are close to the true values of �1 and k2. The
recovered nonlinear function �Fig. 8�a�� coincides closely

with the true transfer function f1 of the nonlinear element of
the first oscillator.

Reconstructing the system X2 in the form of Eq. �2� we
observe the minimum of L�� ,k� at �=1.06 ms and k=
−0.10 that give a close estimation of �2 and k1. In Fig. 8�b�

FIG. 6. Circuitries of the nonlinear devices ND-1 �a� and ND-2
�b�.

FIG. 7. Experimental time series of the first �a� and the second
�b� coupled electronic oscillators with delayed feedback. Number N
of pairs of extrema in the time series of the oscillator X1 �c� and the
oscillator X2 �d�, separated in time by �, as a function of �. N��� is
normalized to the total number of extrema in the time series.

FIG. 8. Reconstruction of nonlinear functions of coupled elec-
tronic oscillators with delayed feedback. �a� The recovered nonlin-
ear function f1 at �1=23.0 ms,�1=0.46 ms, and k2=0.10. �b�–�d�
Results of the nonlinear function f2 recovery for the choice of the
second oscillator model equation in the form of Eqs. �2�–�4�, re-
spectively, at the recovered parameters �2=1.06 ms and k1=−0.10
�b�, �2=0.98 ms and k1=0.00 �c�, and �2=0.97 ms and k1=0.01 �d�.
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the recovered nonlinear function of the system X2 is shown.
This function coincides closely with the true transfer func-
tion f2 of the nonlinear element of the second oscillator. If it
is known that the system X2 is governed by one of the three
model equations �2�–�4� but it is not known exactly which of
the three types of linear coupling takes place, then one has to
recover each of the model equations �2�–�4� for the system
X2 and to define Lmin�� ,k� for each of the three cases. For the
choice of the system X2 model in the form of Eq. �3� we
obtain Lmin�� ,k�=L�0.98 ms,0.00�=0.135. Reconstructing
the model equation of the system X2 in the form of Eq. �4�
we obtain Lmin�� ,k�=L�0.97 ms,0.01�=0.134. In both cases
Lmin�� ,k� is normalized to the number of points. The results
of the nonlinear function f2 recovery for the choice of the
model equation in the form of Eqs. �3� and �4� are shown in
Figs. 8�c� and 8�d�, respectively. From the three plots pre-
sented in Figs. 8�b�–8�d� only the plot in Fig. 8�b� demon-
strates a set of points that is close to a single-valued curve. In
this case Lmin�� ,k�=L�1.06 ms,−0.10�=0.035 that is signifi-
cantly less than in the two other cases. This result indicates
that the model equation of the second oscillator has the form
of Eq. �2�.

We use the smallest value of Lmin�� ,k� from the three
obtained ones as a criterion for the identification of the right
coupling. But if the minimal value of Lmin�� ,k� is close to
the values of Lmin�� ,k� for the other two projections, it can-
not be considered as the reliable criterion for identification of
the coupling type. To ensure the validity of this criterion we
use it only if the minimal value of Lmin�� ,k� is less than the
other values of Lmin�� ,k� by a factor of 2 or a greater factor.
The difference between the values of Lmin�� ,k� for different
projections depends not only on the level of noise but also on
the coupling coefficient. For small coupling values it is dif-
ficult to identify the a priori unknown type of coupling. For
example, for the considered above parameter values of
coupled Mackey-Class equations and the coupling coeffi-
cient k2=0.1 we were able to identify with certainty the type
of action of the system X2 on the system X1 for additive noise
levels up to 20%. The limitations of the method in the pres-
ence of other types of noise need further investigation.

IV. CONCLUSION

We have proposed the method for estimation of coupling
between two scalar time-delay systems of the form �1� based
on the reconstruction of the model equations of coupled sys-
tems from their time series. The method is based on the
statistical analysis of time intervals between extrema in the
time series and the projection of the infinite-dimensional
phase space of a time-delay system to suitably chosen two-
dimensional subspaces. It can be successfully applied to time
series under sufficiently high level of noise. The method can
be used for the analysis of unidirectional and bidirectional
coupling of time-delay systems and is able to estimate not
only the coupling coefficients, but also the delay times, the
nonlinear functions, and the parameters characterizing the
inertial properties of coupled time-delay systems. It is shown
that restricting consideration to several allowed types of cou-

pling it is possible to estimate the coupling coefficients and
to recover the coupled systems even in the case where the
type of coupling between time-delay systems is a priori un-
known. In this case the method allows one to identify the
type of coupling.

The method can be also used for the reconstruction of a
time-delay system affected by a system that is not a time-
delay system and for the estimation of strength of this driv-
ing. In contrast to the other methods of detection of coupling
between the systems from time series �17–19� the proposed
technique is able to define not only the direction but also the
value of coupling.

The method efficiency is illustrated using both numerical
data, produced by coupled time-delay differential equations
including the case of noise presence, and experimental data,
gained from coupled electronic oscillators with delayed feed-
back.

The procedure of the coupling coefficients estimation
considered with coupled time-delay systems like �2�–�4� for
the three chosen types of linear coupling can be successfully
applied to many other types of coupling between scalar time-
delay systems of the form �1�. For example, in the case of
diffusive coupling between time-delay systems X1 and X2
described by the equation

�1,2ẋ1,2�t� = − x1,2�t� + f1,2„x1,2�t − �1,2�…

+ k2,1„x2,1�t� − x1,2�t�… , �10�

it is possible to recover the nonlinear functions f1,2 and the
parameters �1,2 and k2,1 of the systems X1,2 by plotting
�1,2ẋ1,2�t�+x1,2�t�−k2,1(x2,1�t�−x1,2�t�) versus x1,2�t−�1,2� un-
der variation of � and k. The method is also efficient for
some types of nonlinear coupling between the systems X1
and X2 if the coupling term does not contain the unknown
functions g1 or g2. In the case of the coupling term
k2,1�g2,1�x2,1�t��−g1,2�x1,2�t��� and other similar terms the
method cannot be used. It should be noted that in the general
case for the reconstruction of coupled time-delay systems
and their coupling coefficients estimation we must know the
type of coupling defining the embedding spaces to which the
trajectories of time-delay systems are projected.

In principle, it is possible to extend the proposed method
to time-delay systems described in the absence of coupling
by delay-differential equation of higher order than Eq. �1�:

�nx�n��t� + �n−1x�n−1��t� + ¯ + �1ẋ�t� = − x�t� + f„x�t − ��… ,

�11�

where x�n��t� is the time derivative of order n and �1 ,… ,�n

are the parameters characterizing the inertial properties of the
system. However, the higher the order of equation, the more
parameters of coupled systems have to be recovered. As a
result, the time of computation significantly increases and the
quality of reconstruction deteriorates since the procedure in-
volves numerical calculation of the higher order derivatives.
Similar problems arise in the case of three and more coupled
time-delay systems.
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